
BSP3: Detecting AI-generated Art
Friday 16th February, 2024 - 09:06

Angelica Rings
University of Luxembourg

Email: angelica.rings.001@student.uni.lu

This report has been produced under the supervision of:
Bereket A. Yilma

University of Luxembourg
Email: bereket.yilma@uni.lu

Abstract

This bachelor semester project aims to explore the topic of image classifi-
cation and the creation of a software that serves as an AI art detector, which
distinguishes between AI-generated and human-made artworks. The scientific
deliverable of this project is centred around the scientific question ”How can
advancements in image recognition technologies, such as convolutional neural
networks, be leveraged to detect AI-generated art?”. The report focuses on
the theoretical aspects, including the fundamentals of Convolutional Neural
Networks (CNNs), training a CNN and binary classification. On the technical
side, we build a web application with a basic GUI. A dataset with AI-generated
and human-created artworks is collected, and then a CNN-based architecture
will be employed to build a classification model. This model is designed to
analyze input images and provide a prediction of whether or not the image
has been ai-generated or not.

1. Introduction

Recently, AI advancements have enabled machines to create
artworks autonomously. Thus, differentiating between human-
made and AI-generated art has become increasingly difficult
due to the improved AI generation models. This has created
a significant problem. One of them is the ease with which
realistic images can be fabricated to propagate misinformation
and fake propaganda. As well as exploiting it to scam people
and commit crimes. The art scene also suffers from this, since
people rely more and more on AI Generators to create the art
they envision or steal another persons art as a sample.

A solution for that problem is creating an application that
can predict whether or not the input image has been AI-
generated or is an artwork created by a human. In this report
we explore the process of creating a CNN and develop a
webapp additionally where you uplaod the image.

2. Project description

2.1. Domains

2.1.1. Scientific . The scientific domains of this project is
Artificial Intelligence, specifically Computer Vision. This part
goes over the theoretical aspects of image classification.

2.1.2. Technical. The domain of the technical part of this
project is Computer Vision.

2.2. Targeted Deliverables

2.2.1. Scientific deliverables. The scientific question of this
project is ”How can advancements in image recogni-
tion technologies, such as Convolutional Neural Networks
(CNNs), be leveraged to detect AI-generated art?” This
deliverable focuses on the machine learning technique used
in this project, examining the functionality and performance
in context of classifying different image datasets. It provides
insights into the mechanism.

2.2.2. Technical deliverables. The aim of this project is to de-
velop a web application centered on image classification. This
involves creating a foundational website that enables users to
upload images for classification, distinguishing between those
generated by AI and those created by humans. This section
outlines the process of creating the dataset, convolutional,
neural network and the web application.

3. Pre-requisites

3.1. Scientific pre-requisites

To begin with, it is essential to have a good understanding
of various machine learning techniques and the concepts of
computer vision, as well as understanding how AI art is being
generated, and what distinguishes it from human made art.

3.2. Technical pre-requisites

Coding knowledge in python and a good understanding of
how neural networks function, to later implement it. As well
as knowledge in web development to create an interface where
the user can upload an image.

4. A Scientific Deliverable

4.1. Requirements

The goal of this project is to detect AI-generated art.
Let: X be the set of input images.

Y be the set of possible labels, where:
Y = 0 represents AI-generated art.
Y = 1 represents human-created art.
D is the dataset with pairs (x, y),
where x ∈ Xisanimageandy ∈ Y isitslabel.

Now, we aim to find a classification model (hypothesis) H
that maps an input image x to a predicted label y:

H : X → Y (1)

The classification model H could be represented by a
function such as a neural network, which takes the image as
input and produces an output in the set Y .

Specifically we define this binary classification problem
mathematically as follows:

1) Training Data: Given a training dataset Dtrain consist-
ing of pairs (x, y), where x is an image and y is the
corresponding label (0 for AI-generated, 1 for human-
created):

Dtrain = {(x1, y1), (x2, y2), . . . , (xn, yn)} (2)

2) Hypothesis Space: We define the hypothesis space H
as a set of possible classification functions:

H = {h(x; θ) | θisasetofmodelparameters} (3)

Here, h(x; θ) is a function parameterized by θ that maps
input images to predicted labels.

3) Objective Function: We define a loss function, typically
a binary cross-entropy loss, that measures the dissimi-
larity between the predicted labels and the true labels in
the training data:

J(θ) =
1

n

n∑
i=1

L(h(xi; θ), yi) (4)

Where L is the loss function, and θ represents the model
parameters.

4) Optimization: Find the optimal model parameters θ∗ =
argminJ(θ) by minimizing the loss function over the
training data.

Once we have trained our model and found the optimal
parameters θ∗, we can use the classification model h(x; θ∗) to
predict whether a given image x is AI-generated or human-
created by evaluating it with the model:

ypred = h(x; θ∗) (5)

The predicted label ypred will be either 0 (AI-generated) or
1 (human-created), effectively solving the binary classification

problem. Thus, we formulate the following key research
question to investigate in this project:

RQ: ”How can advancements in image recognition
technologies, such as Convolutional Neural Networks
(CNNs), be leveraged to detect AI-generated art?”

To answer this key research question we explored state-
of-the-art CNN-based approaches for image recognition and
employed them to solve the problem formulated above.

4.2. Design

The production section of this project discusses the follow-
ing topics:

• Introduction to Image Classification
• Related Works
• Convolutional Neural Network
• Experiments
Initially, a comprehensive introduction will be provided on

the topic of image classification to aid the comprehension
of the following sections. The following section discusses
various studies and projects related to the topic of detecting
AI generated images with machine learning techniques. Those
works give context on the project using existing scientifical
research and works. After that, the process of image prepro-
cessing and classification will be covered and explained. The
methodology and outcomes of experiments conducted in the
project are detailed, offering insights into the practical aspects
of implementing image classification techniques.

4.3. Production

Image Classification is a machine learning task and part of
the computer vision field. An image classifier model takes an
image as input and assign the image to one of the classes
of the dataset it was trained with. For example looking at
a model called ResNET50, that has been trained with the
dataset ImageNET would have 1000 classes. The classifying
process relies heavily on the deep learning background to
extract the necessary information, patterns and features from
the image to give a prediction. In this section the process
of image classification will be explained. This encompasses
image preprocessing, feature extraction utilizing a convolu-
tional neural network, dataset division, model training, and
subsequent model testing. [5]

4.3.1. Related Works. In the recent years, various methods
for categorizing AI-generated imsages and real images have
been proposed. In this section, we will delve into several
approaches.

The work of Jordan J Bird et al. [3] proposed the utilization
of CNNs with binary classification. They created a dataset
called CIFAKE, which consists of 60,000 images generated
using latent diffusion, alongside another 60,000 real images,

that were taken from the CIFAR-10 dataset. The dataset
was used to train the model. Additionally, they incorporated
a feature called XAI (explainable AI), which is used to
interpret the results of the image classification. To achieve
this, they employed Grad-CAMs (Gradient Class Activation
Maps) to extract the most important features of the image.
This is particularly useful because the most crucial aspects
of an image typically highlight the inaccuracies present in
AI-generated images. This approach yielded an accuracy of
92,98%. The highest accuracy was achieved by employing two
output layers with 128 filters and a loss of 0.221.

A similar approach to explain the decision has been shown
in the work of Samah S. Baraheem et al. [2], they have
compared and implemented different kinds of Class Activation
Maps (CAM) techniques, such as AblationCAM, LayerCAM,
Faster ScoreCAM and Grad-CAM as in the previous paper.
They created their own dataset called RSI, which consists
of several other datasets. This dataset is used to fine-tune a
classifier that has been pre-trained with the ImageNet dataset.
The CAMs were used to find specific artifacts and visualize
it. An explanation technique known as Local Interpretable
Model-agnostic Explanations (LIME) has been integrated,
and highlights regions with super-pixels extracted from the
CAMs. This technique can provide insights into which regions
of the image contributed to the model’s prediction. Based
on the test outcomes, the model EfficientNetB4 exhibited
the highest efficiency, achieving an accuracy of 100%. The
study’s findings suggests that GAN-generated images exhibit
specific imperfections, distortions and artifacts, which well-
trained models can use to identify whether an image has been
generated by AI.

On the other hand, Luca Guarnera et al. [6] suggested to
use the image classification model ResNET-34. This model has
14 output classes, of which the class with the real images is
being removed for enhanced accuracy. The multilevel deepfake
detection system consists of 3 levels, the first level determines
whether the image was AI-generated or if it is a real image,
the second level distinguishes between DM (Diffusion Model)
and GAN (Generative Adversarial Networks) and finally, the
third level identifies the engine used to generate the image. The
overall accuracy of this project was 97% for each task, with
the first level classification achieving an accuracy of 94.85

Another different approach to this problem has been pre-
sented by Peter Lorenz et al. [9]. In their study, they utilized
the Multi Local Intrinsic Dimensionality (multiLID) to detect
AI-generated images. While most existing approaches and
studies mainly focused on GAN-generated images, this method
specifically targets DM-generated images. In their method,
they used an untrained ResNET-18 model to extract the
low-dimensional features of the images. This step is crucial
because calculating the LID of a high-dimensional image is
inefficient in this case. In the following step, they calculate
the multiLID and pass the images through a trained classifier
to determine, based on the LID value, whether the image has
been generated by AI or not. An expected LID value is taken
as a reference, thus if the calculated LID of the image does not

match, it indicates irregularities in the image, potentially stem-
ming from AI generation. After conducting tests with various
models and the LSUN-Bedroom dataset, it was observed that
the pre-trained models employed performed less effectively
than the custom binary CNN they had developed. Calculating
the multiLID will enhance the performance and accuracy of
CNNs. However, the downside of this approach so far is that
it does not perform very well with new data.

Lastly, in the paper of Riccardo Corvi et al. [4], they
have compared different AI image detectors. Namely: Spec,
PatchForensics, Wang2020, Resnet50 and Grag2021. Those
models are trained using only the dataset ProGAN, which
contains GAN-generated images. However based on the test
results, this has limited the capability and accuracy of the
detectors. They performed slightly worse in context of DM-
generated images or new data, thus it is important to train
the detectors with images of different generation engines. Out
of all models, the model Spec has had the highest score.
For the test with the uncompressed image it has achieved
an accuracy of 70.5/75.2, which is 93,75% and for the test
with the compressed images it has had a 100% accuracy. In
conclusion, the model Spec works the best for DM-generated
images.

4.3.2. Convolutional Neural Networks. This subsection will
explain the process of image classification and explore various
elements comprising convolutional neural networks. This en-
compasses image preprocessing, feature extraction utilizing a
convolutional neural network, dataset division, model training,
and subsequent model testing.

Steps of implementation:

• Preprocessing data
• Design and define the CNN
• Choose a loss and optimizer function
• Train CNN model
• Evaluate CNN model

Preparing the data. Preparing the data for the image classi-
fication task is a very crucial step. The input data has to be
preprocessed. The first step is data collection, then the dataset
has to be loaded and labeled. Then the image will transformed
or enhanced. Under this falls normalizing the image, convert-
ing it to greyscale, and resizing it. Afterwards, the image is
transformed into a Tensor. Normalization enhances the contrast
of the pixels, meaning that the difference between the dark and
light areas will be clearer. For images with lower contrast, this
can improve the visibility of certain features. [5] In Figure 1
we can see a significant difference between the original image
from the dataset and the same image after being normalized.

If the image classification task does not require colors, then
it is converted to grayscale to reduce the complexity. Grayscale
images only show the differences in brightness. There are 256
different shades of gray, ranging between black and white.
This means since there is only one channel passed through, it
takes less information. [5] In Figure 2 the original image and

Fig. 1: Original and Normalized Image

the grayscale image don’t show much of a difference since the
saturation and contrast of the original image are low.

Fig. 2: Original and Grayscale Image

The last transformation applied is resizing the image. To
resize the image the original image will be scaled down in
the same ratio, and if necessary added padding so that every
image has the same dimensions. Generally, the size does
not align with the original pixels which creates the issue of
the brightness and saturation not matching, to solve that an
interpolation method is being used to estimate and adapt the
color or intensity of pixels at the new position. Resizing is
important to ensure the model learns the features consistently.
As well as accelerating the training process. In Figure 3 the
image has gone through all transformations and has been
resized from 608x1000 to 50x50 pixels. In this example, the
bicubic interpolation mode has been used. It takes samples
from the larger neighbouring area of the pixels to estimate the
new values.

Fig. 3: Original and Fully Transformed Image

Figure 4 shows an image from the dataset on the left
and on the right the same image after going through the
transformations. The values in the grid show the tensor values
per pixel.

After preprocessing the image and saving the data, the
dataset has to be split into the train and test datasets. The
most common ratio for training and validation is 80/20.

Fig. 4: Original Image and Transformed Tensor (25x25 pixels)

Model Architecture. A Convolutional Neural Network con-
sists of several layers through which the input images are
passed. The main types of layers are the input layers, con-
volution layers, pooling layers, and fully connected or dense
layers [5]. Those layers consist of neurons and have different
operations.

The base of a CNN are convolutional layers. It comprises
a kernel (also known as a filter) that can be adapted with the
padding and stride parameters. This type of layer takes an
input matrix, transforms it, and passes the output to the next
layer. It is specifically designed to detect patterns within the
input data. Thus images, comprising various patterns, such as
shapes, edges, objects, textures, and colours are systematically
analyzed by the convolutional layer. The filter of the layer
traverses each set of pixels of the input until every pixel has
been processed. Those filters embedded within the layer, detect
specific patterns. Starting with simple features like edges or
shapes, the filter progressively evolves into more complex
patterns as the network delves deeper. The resulting matrix
is called a feature map. From a mathematical perspective, the
formula used to extract the features is:

W = (WF + 2 ∗ P)/S + 1

with W being the image tensor, F being the kernel matrix,
P being the padding and S being the stride value. [1] Stride
is the offset or step the filter makes between each traversal.
Padding adds pixels around the area the filter is processing.
The stride and padding values have an impact on the dimen-
sions of the input or output vector. Between each convolutional
layer, the Rectified Linear Unit (ReLU) activation function
gets called. If the value of the input is positive, it will return
the same value unchanged, however, if the value is negative
it will return 0. After this, the output gets passed to another
layer. The function itself is defined as [5]

f(x) = max(x, 0)

Afterwards, the feature map is passed to the next layer in
the CNN, which is usually a pooling layer. There exist two
types of pooling layers: Max Pool and Average Pool. Max
Pool retains the most significant elements of the feature map,
while Average Pool computes the average of each region of
the feature map. The primary purpose of pooling is to reduce

the dimensions of the input data, effectively shrinking the
image. This reduction minimizes the number of parameters
and computations required in subsequent layers of the neural
network. Max Pooling vs. Average Pooling Formulas: [5] [8]

MaxPooling(xi,j) = max
(p,q)∈Ri,j

xp,q

AveragePooling(xi,j) =
1

|Ri,j |
∑

(p,q)∈Ri,j

xp,q

Fig. 5: Max Pooling vs Average Pooling

The Figure 61 shows an example of a convolutional neural
network, as it is also a deep neural network. The graphic
shows the input layer, hidden layers and output layer. Each of
them containing multiple neurons that are connected to other
neurons.

Fig. 6: Example of Deep Neural Network

The convolutional and pooling layers progressively reduce
the spatial dimensions of the feature maps while simultane-
ously increasing the number of channels. After that the fully
connnected or dense layers combine all feature maps from
the previous layers and create a feature vector, which is used
to classify the images. The result can be calculated through
an activation function, such as Softmax or Sigmoid. Softmax
returns multiple values between 0 and 1, while Sigmoid
returns a single value between 0 and 1. For that reason the

1. edited image; original illustration by BrunelloN: https://commons.
wikimedia.org/wiki/File:Example of a deep neural network.png#filelinks

Sigmoid activation function is generally used for binary image
classification and to give a probability score for the class it
has assigned. In mathematical terms the Sigmoid activation
function looks like this: [5]

σ(x) =
1

1 + e−x

x represents the input. 1 + e−x is the denominator, which
ensures that the output of the function is bounded between 0
and 1. Softmax on the otherhand has a different formula: [5]

σ(x)i =
exi∑n
j=1 e

xj

xi is the input vector with the i-th value.
∑n

j=1 e
xj represents

the sum of the exponentials of all elements in the input
vector. The softmax function takes in a set of numbers and
normalizes them into a probability distribution, where each
number represents the likelihood of the input belonging to a
particular category. This is particularly useful for multi-class
problems.

Optimizer. There are several optimizer and loss functions to
choose from. First we have to establish the difference between
optimizers. There are adaptive optimizers, such as Adam.
It possesses an automatic learning rate adjustment feature
throughout the training process, achieved through the usage of
gradient first and second moment estimates. It is very efficient
and requires less trial-error to find an optimal learning rate.
However, the issue with Adam is that it converges too quickly.
Meanwhile another optimizering technique is gradient descent,
such as the Stochastic Gradient Descent (SGD) optimizer. It
operates by fine-tuning the model’s parameters according to
the errors in its predictions. The term ”stochastic” indicates
that it randomly selects a subset of training data for each step,
enhancing speed and efficiency, especially with large datasets.
[7]

4.3.3. Experiments.

Experiment 1: Hyperparameters. To find the best hyperpa-
rameters to work with, we have conducted some experiments
with the CNN. This involves training the CNN using the art
dataset created in the technical part and changing different
parameters, such as the number of layers, number of filters,
padding value, kernel size, number of epochs, the learning rate
and training it with an without the optimizer, to achieve the
highest accuracy.

In Table 11, you can see the test results of the AI-Art
Classifier. The table consists of the number of layers, neurons
the fully connected layers have, the padding used for the
filter, the filter (kernel) size, the learning rate, the average
loss computed after training and finally the model accuracy.
To provide context on the experimental setup, the model
was trained on the ArtDataset created in the technical part,
comprising approximately 7000 images for training and about
1700 for validation. The dataset consists of 50x50 normalized

https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png##filelinks
https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png##filelinks

Layers Filters Padding Kernel Size LR Avg. Loss Model Acc.
14 128 1 3 0,001 22,5 70,10%
14 128 1 3 0,0025 21 70,28%
14 128 1 3 0,003 21 70,51%
14 128 1 3 0,005 22 70,85%
14 8192 1 2 0,003 17 79,72%
14 16384 1 2 0,0025 16 83,35%
14 16384 1 2 0,003 17 80,70%
14 16384 1 2 0,0035 17,4 77,02%
14 16384 1 2 0,005 54 51,38%
14 32768 1 2 0,005 54 48,62%
20 512 1 3 0,001 25 60,43%
20 512 1 3 0,002 25 66,85%

TABLE 1: Experiment Results

grayscale images, that were trained in batch size of 32. The
training process involved 15 epochs using the Adam optimizer.
The corresponding learning rates are listed in table. As the
table shows, the classifier’s performance tends to degrade, as
the amount of layers increases. It performs the best with a
learning rate between 0,002 and 0,003 and any value bigger
than 0,003 starts losing accuracy significantly.

The results for experiments 9 and 10 in the table stand out
as outliers due to unexpectedly low accuracy. The test run
with 32768 neurons achieved an accuracy of 48.62%, notably
worse than random chance. Similarly, the other test run with
16382 neurons exhibited a comparable result with a loss of
54 and an accuracy of 51,38%. As they both have a high
learning rate, suggesting the low accuracy can be attributed to
the higher learning rates. Thus we can conclude that increasing
the number of layer may lead to degradation in performance
or diminishing returns. The number of neurons in each layer
affects the model’s capacity to learn complex patterns.

Experiment 2: Input Image Sizing. The next test we conduct
is an image sizing experiment to determine the best dimensions
for the transformations. The training was conducted on the
optimal model architecture determined in the technical section,
the training involved 25 epochs and a batch size of 32 images.
The architecture comprised 19 layers with a total of 769
neurons, with the optimizer Adam and the learning rate was
set to 0.0025.

Image Size Avg. Loss Model Acc.
25x25 16,1927 82,49%
32x32 13,4715 84,15%
50x50 14,9847 86,35%
64x64 14,9046 86,15%
75x75 16,7732 83,76%

100x100 18,9191 83,95%

TABLE 2: Image Sizing Experiment Results

The Table 2 presents the results of the experiment. Each row
corresponds to a specific image size. The other 2 columns
record the corresponding average loss computed from the
training epoch, and the model accuracy. As the image size
increases, the average loss tends to slightly rise, while model
accuracy is generally kept within the same range. The highest
accuracy is achieved with a 50x50 image size at 86.35%,

suggesting that this resolution is optimal model for the given
architecture and parameters. To understand the significance of
image sizes Figure 7 shows an original image in comparison
to the transformed images ranging from the smallest size at
the top left to the image with the biggest size in the right lower
corner.

Fig. 7: Comparison between original and image sizes 25x25
to 100x100

Experiment 3: Learning Rate. This experiment aims to
explore the impact of learning rates with both Adam and SGD
optimizers.

Optimizer LR Avg. Loss Model Acc.
0,0001 15,4064 82,26%
0,0002 17,3165 86,14%
0,00025 15.4411 86,35%

Adam 0,0003 19,6508 84,27%
0,0005 20,9407 84,17%
0,001 23,1240 83,01%
0,01 109.8354 50,63%
0,01 15,9250 83,59%
0,001 5,4959 86,33%
0,002 30,6068 84,33%

SGD 0,005 11,6501 68,26%
0,0001 31,4968 62,73%
0,0005 32,4393 67,51%
0,0009 51,3723 68,89%

TABLE 3: Learning Rate Experiment Results

First comparing all of the Adam values with each other
in Table 3, there is a general trend of higher learning rates
leading to higher average loss and a slightly lower model
accuracy. For instance, moving from LR=0.0001 to LR=0.0002

results increase in both average loss and model accuracy.
However the past that point, the accuracy and average loss
starts increasing again. Thus, LR=0.0002 achieves the highest
model accuracy among the Adam settings, suggesting an
optimal learning rate. Next, comparing the SGD results with
each other, we can observe that the highest model accuracy
for SGD is 86.33%, achieved with a learning rate of 0.001.
Out of all results Smaller learning rates (0.0001 and 0.0005)
result in significantly higher average losses and lower model
accuracies. Overall we can conclude that Adam is a better
choice, considering the good performance across a range of
learning rates, whereas SGD appears to be more sensitive,
requiring more fine-tuning of the learning rate to achieve
optimal results.

4.4. Assessment

The scientific deliverable has fulfilled the requirements that
were set. An insight on recent research in the domain of image
classification in context of AI-generated images has been
given. As well as elaborating on the process of a CNN was
presented, and experiments that determine the performance
of the classifies have been conducted and analysed. A short
overview of what has been discussed: Convolutional Neural
Networks can be used to detect certain features in images
which answers the scientific question of ”How can Convolu-
tional Neural Networks (CNNs), be leveraged to detect AI-
generated art?” The conducted experiments not only show the
optimal hyperparameter configurations but also emphasized
the significance of careful tuning in achieving superior model
performance.

5. A Technical Deliverable

5.1. Requirements

First, we have to establish the requirements for this project.
We divide this section into 2 parts, as the project’s objective is
to develop a web application focused on image classification.

The initial phase involves the implementation of a binary
image classifier, which will be exported for integration into the
web application. Proceeding to the next phase, the upcoming
task involves the creation of a basic GUI, that enables users
to upload images and then generates a response, presenting
the input image alongside the classifier’s output. Simultane-
ously working on the backend of the web application on the
integration of the classifier.

Image Classifier. The first requirement for this project is to
successfully create an image classifying model and export
it, but before that we have to establish the requirements for
the process of creating the model. The criteria to create a
good dataset are the number of images, diversity, quality of
images and equal number of images for each class. Each image
in the dataset has to be assigned a label. The quality and
diversity of the dataset is very crucial, because the accuracy

and performance rely on the data on which the classification
model was trained on. So it must meet the following criteria
to ensure the success. If we provide the model with a diverse
set of content, it will be exposed to different kinds of styles
and features. The second criterion involves determining an
appropriate size for processing images, as the accuracy may be
influenced by both the size of the images and the batches. The
next criterion involves establishing the optimal configuration
of layers and hyperparameters, such as the optimizer and
learning rate, for the Convolutional Neural Network, aiming
to fine-tune and enhance its overall performance. Finally the
evaluation of the model should yield an accuracy of at least
80% to 90%.

Web Application. As mentioned previously, the core of the
project is the image classifier. Following the completion of the
classifier, the model has to be exported and implemented in the
backend. Moving forward, the next step consists of developing
a basic graphical interface allowing users to upload images.
The model generates a response presenting the uploaded
image alongside the classifier’s predicted label. Thus, the
web application features encompass a fundamental HTML
website incorporating an intuitive upload button. Upon the
user’s submission of an image, the application is designed to
generate a processed image with a labeled output, discerning
between categories of ”human-made” and ”AI-generated.”

5.2. Design

Initially, for the development of a custom image classifica-
tion model from scratch, we utilized the CatsvsDogs dataset
from Kaggle. Given the dataset was created specifically for
a machine learning task, it is a common way to understand
and build a basic binary image classifier. Essentailly, the task
is the same only with different datasets. The procedure was
documented in a Jupyter notebook, serving as a reference point
for the following tasks. Specifically, we use it as a basis for the
classifier and incorporate the dataset mentioned in the next sec-
tion that contains artworks and the AI-generated counterparts.
And the second part involves adapting the hyperparameters of
the basic architecture to match the specifications of this task,
since the underlying structure remains essentially identical.

The following items listed are the design choices for the
CNN architecture. Some of them are based on the experiments
listed in the scientific production.

Activation Functions. : The activation function chosen for this
project is the sigmoid function. This choice is motivated by
its suitability for binary classification tasks, where the model
needs to predict whether an image belongs to one of two
classes.

Image and Batch Sizes. : In the scientific experiment section,
it was observed that the choice of image size and batch size
significantly impacted the model’s performance. The learning
rate of 0.00025 was selected with the Adam optimizer due to

its adaptability. Larger image sizes led to increased processing
time and lower accuracy. For instance, a comparison between
50x50 and 100x100 pixel sizes revealed a 2.5% accuracy
difference. Additionally, batch sizes, specifically a choice of
32, were found to enhance results and avoid overfitting or
underfitting issues.

Hyperparameter Adaptation. The optimizer chosen for the
project is Adam, as opposed to the more commonly used
optimizer SGD. The choice of a learning rate of 0.00025,
coupled with the Adam optimizer, was based on experiments
revealing that higher learning rates resulted in less optimal
outcomes at specific points. Moreover, the impact of image
sizes on the model accuracy was observed, the images with
dimension 50x50 yielded optimal results compared to larger
dimensions.

Loss Function. The choice of Mean Squared Error (MSE)
loss is stems from its ability to provide a more insightful
visualization of the loss compared to other algorithms, such as
CE or Exponential. MSE loss highlights errors by penalizing
larger deviations between predicted and true labels. In the
context of binary classification tasks, its application allows
for a dynamic representation of loss throughout the training
process. In contrast to alternative loss functions that may
persist at a diminished level following misclassification, MSE
loss reflects the magnitude of errors distinctly. It highlights the
areas the model is struggling in.

Evaluation Metric. : The accuracy of the image classifier is
assessed using the sigmoid activation function. The evaluation
metric involves a systematic calculation of accuracy, measur-
ing the model’s correctness in predicting binary outcomes.
Specifically, predictions are compared against ground truth
labels, and the percentage of correct predictions is determined.
This metric shows the overall performance and efficiency of
the image classifier on the test dataset.

5.3. Production

5.3.1. Creation of Dataset. Since the objective of this project
is to detect AI-generated artworks, the initial step involves
creating a dataset consisting of AI-generated work. For this
approach, several different datasets have been combined, with
primary based of the publicly available dataset from the
Rijksmuseum. For a diverse dataset paintings and drawings
featuring various art styles and motives have been chosen.
Ranging from portrait paintings, scenic paintings to landscapes
or animals. The images of the dataset are used as a reference
to generate counterparts for each image using AI. For that
we have used a Diffision Model from RunawayML1. Run-
awayAI offers a tool called ”Image Variation” based on a
custom adaption of Diffusion Models. Given an input image,
it generates different variations of the image altered by AI,

1. https://runwayml.com

aiming to produce variations closely resembling the original
artworks.

Fig. 8: Example of artwork and AI generated counterpart
(human portrait)

Fig. 9: Example of artwork and AI generated counterpart
(landscape painting)

The Figure 8 shows an example of a real artwork on the
right, and on the left is the variation of the image. The
images look very similar in terms of color scheme and painting
technique, however the AI generated variation is less detailed
and has a different texture that paintings don’t have.

Another example of a landscape painting can be seen in
Figure 9. The artworks are very similar in terms of composi-
tion and landscape. The AI generated counterpart looks less
detailed and has a different style.

5.3.2. Building the Classifier. The image classifying model
is developed using Python and the deep learning framework
Pytorch2. PyTorch simplifies the process of training neural
networks, making it particularly useful for this project, given
our utilization and creation of a custom Convolutional Neural
Networks (CNNs). The focal point of this task is a binary
classifier for a standard dataset, to offer an insight and guide
for the initial development of a CNN. In this example we use
the well-known ”CatsVSDogs”1 dataset, which is commonly
used to learn and understand binary classification. The goal
of this example is to classify the images of cats and dogs,
and essentially to create a prototype for the model with a high
accuracy. To see the steps in more detail, please refer to the
Jupyter Notebook for CatsVSDogs and AIArtDetector.

2. https://pytorch.org/
1. https://www.kaggle.com/c/dogs-vs-cats/data?select=train.zip

Building an Image Classifier can be summarized in these
steps of implementation:

• Preprocessing data
• Design and define the CNN
• Choose a loss and optimizer function
• Train Model
• Evaluate Model
• Save Model
Following the steps, the first thing to do before preprocess-

ing the dataset is loading it into a dataframe from a CSV file to
process the images. After this we apply the transformations to
the dataset. Later, the dataset underwent partitioning, wherein
approximately 20,000 images were allocated for training pur-
poses, while the remaining 5,000 images were reserved for
testing.

Preprocessing Data. The chosen transformation operations
begin with resizing the images to a dimension of 150x150
pixels using the bicubic interpolation mode. Next, the images
are converted to grayscale, limiting the channel to one. Then
a normalization step is applied to scale pixel values, centering
them around a mean of 0.5 and a standard deviation of 0.5. The
transformation then convert the images into tensors. Finally,
the transformation then convert the images into tensors. Figure
10 shows how the original images look in comparison to the
image after the transformation.

Fig. 10: Example of Cat Image Transformation

Design and define CNN architecture. The first layer is
a 2D convolutional layer (Conv2d) with 1 input channel,
32 output channels (or filters), a 3x3 kernel size, and 2x2
padding. Followed by a MaxPooling layer (MaxPool2d) with
a kernel size of 2x2 and a stride of 2. A Rectified Linear Unit
(ReLU) activation function is applied. Batch Normalization
(BatchNorm2d) is used to normalize the input to the next
layer. Batch normalization helps stabilize and accelerate the
training process. This sequence repeats three more times
with the following pattern: a convolutional layer, followed
by max pooling, ReLU activation, and batch normalization.
The number of filters progressively grows from 64 to 128,
then to 256, and finally to 512. As for the fully conncted
layers, the output from the last convolutional layer is flattened
using Flatten. A fully connected layer (Linear) with 512 input
features and 256 output features is added, followed by ReLU
activation. The final layer is a linear layer with 256 input

features and 1 output feature, followed by a sigmoid activation
function.

Train Model. The neural network is set to training mode.
Within each epoch, a nested loop iterates through the training
data batches, employing the Adam optimization algorithm.
For each batch, the optimizer’s gradients are set to 0, and
the network’s output is obtained. The loss is calculated using
the Mean Squared Error (MSE) loss function, with the output
and ground truth tensors appropriately reshaped and converted.
Backpropagation is then performed, and the optimizer updates
the model parameters. During training, the running loss is
accumulated, and predictions are thresholded at 0.5 to classify
them as binary outcomes. The number of correct predictions
is saved, contributing to the overall accuracy computation. At
the end of each epoch, the accuracy and total loss are printed.
The training process is completed after the specified number
of epochs.

Evaluate. Accuracy metrics are computed by comparing the
model’s predictions to the true labels of the test set. After
processing all test batches, the accuracy is determined as the
ratio of correctly predicted samples in relation to the total
number of samples. This specific architecture has yielded an
accuracy of 90,20%. The loss is measured with MSE loss and
records the error between the predicted values of the model
and the actual values.

Adaptation to Art Image Classifier. The Art Image Classifier
was trained with the same model created for CatsVSDOgs with
slight adaptations. The images were scaled to 50x50 instead
of 150x150. This choice is justified by the experiments in
the scientific section, in which the 50x50 images resulted in
the highest accuracy for this classifier. The amount of epochs
used to train the model was 25. Each training batch consisted
of 32 images. Those minimal adaptation ensured that the
model learned to distinguish AI-generated and human made art
effectively. We will shortly discuss the training and validation
of the model.

Fig. 11: Train Loss per Epoch

As seen in Figure 11, the training loss decreases consistently
from epoch 1 to 15. After epoch 15 it slowly becomes more
constant. This suggests that the model learns the patterns of
the images throughout the initial stages of the training and

slowly becomes accustomed to the features in the later stages.
It also suggests that the model has reached a point where all
features have been learned, as well as the data being overfitted
at the end. Generally, based on the performance of the model
in the evaluation phase we can say that this has not been the
case.

Fig. 12: Test Loss per Iteration

Finally, Figure 12 shows how the model performed during
the validation phase with an accuracy of 86,35%. After vali-
dating the model the general loss is 6.384. This provides an
overall measure of the model’s performance on each batch of
images from the test dataset. The highest loss an iteration has
experienced was 30 and the lowest was close to 0, with an
general loss of 6.384. The highest value of 30 indicates that
there was a batch of images where the model’s predictions
were quite far from the true labels. Contrarily the lowest value
of 0 indicates that there were batches where every image has
been predicted correctly.

5.3.3. Web Application. In the initial phase, we will create a
simple website. Users will be able to upload images through
the interface, initiating the image classification process. The
application uses Javascript for the interface elements and
interactions. For the backend we will use Python, specifically
the Flask library, to handle the image processing and the
communication with the image classifier. The backend handles
user requests and runs the image through the classification
process. Finally, the application provides the result of the
classification stating whether it is a real or an AI-generated
art. Thus, the focus of this phase is the functionality of the
image classifier, as well as having a basic interface.

The upcoming paragraphs explain the various files and
components of the web application.

app.py: This module is the Flask application. The appli-
cation receives an image from the upload form and saves
it to the upload folder. Then it uses a pre-trained model to
make predictions on the uploaded image. The results are then
presented on a webpage, including the original image and the
model’s predictions.

predict.py: This module includes two functions for prepro-
cessing an image and making predictions using the pre-trained
neural network model. It takes an input image and file path,
then preprocesses the image with the specified transformations.
The transformations are the same as mentioned in the previous

section for AIArtClassifier. The predict function loads pre-
trained model and then passes the image through the model.
The output is a probability value, which is converted into a
binary prediction based on a threshold, 0.7 in this case. The
script returns a dictionary containing the predicted label (”ai
generated” or ”human made”) and the associated probability
score.

net.py: This module defines the corresponding neural net-
work class of the model.pth, as Pytorch requires this to
function.

The Figures 13 and 14 show what the website looks like
with and without input. The image that has been uploaded was
in fact AI-generated.

Fig. 13: Webapp without any Input

Fig. 14: Webapp with Image and Classification Result

5.4. Assessment

Most of the requirements that were set in the have been met.
A custom image classifier has been created and implemented.
We have been able to create a very basic web application that
returns for every input either human made or AI-generated.
However, the interface does not look very aesthetically pleas-
ing and lacks an explanation for the prediction. The model
yields an accuracy of 86%, which is sufficient considering it
has been trained with only approximately 9000 images.

Acknowledgment

The author would like to thank their project tutor, Bereket A.
Yilma, for their guidance and support as a Project Academic
Tutor. He has been a great help throughout the whole project
duration and taught us everything we needed to know about
deep learning in context of image classification.

6. Plagiarism statement

This 350 words section without this first paragraph must
be included in the submitted report and placed after the
conclusion. This section is not counting in the total words
quantity.

I declare that I am aware of the following facts:

• As a student at the University of Luxembourg I must
respect the rules of intellectual honesty, in particular not
to resort to plagiarism, fraud or any other method that is
illegal or contrary to scientific integrity.

• My report will be checked for plagiarism and if the
plagiarism check is positive, an internal procedure will
be started by my tutor. I am advised to request a pre-
check by my tutor to avoid any issue.

• As declared in the assessment procedure of the University
of Luxembourg, plagiarism is committed whenever the
source of information used in an assignment, research
report, paper or otherwise published/circulated piece of
work is not properly acknowledged. In other words, pla-
giarism is the passing off as one’s own the words, ideas or
work of another person, without attribution to the author.
The omission of such proper acknowledgement amounts
to claiming authorship for the work of another person.
Plagiarism is committed regardless of the language of
the original work used. Plagiarism can be deliberate or
accidental. Instances of plagiarism include, but are not
limited to:

1) Not putting quotation marks around a quote from
another person’s work

2) Pretending to paraphrase while in fact quoting
3) Citing incorrectly or incompletely
4) Failing to cite the source of a quoted or paraphrased

work
5) Copying/reproducing sections of another person’s

work without acknowledging the source
6) Paraphrasing another person’s work without ac-

knowledging the source
7) Having another person write/author a work for one-

self and submitting/publishing it (with permission,
with or without compensation) in one’s own name
(‘ghost-writing’)

8) Using another person’s unpublished work without
attribution and permission (‘stealing’)

9) Presenting a piece of work as one’s own that con-
tains a high proportion of quoted/copied or para-
phrased text (images, graphs, etc.), even if ade-
quately referenced

Auto- or self-plagiarism, that is the reproduction of (por-
tions of a) text previously written by the author without
citing that text, i.e. passing previously authored text as
new, may be regarded as fraud if deemed sufficiently
severe.

References

[1] Cs231n: Convolutional neural networks for visual recognition. https://
cs231n.github.io/convolutional-networks/. Accessed: 09/01/2024.

[2] Samah S Baraheem and Tam V Nguyen. Ai vs. ai: Can ai detect ai-
generated images? Journal of Imaging, 9(10):199, 2023.

[3] Jordan J Bird and Ahmad Lotfi. Cifake: Image classification and
explainable identification of ai-generated synthetic images. arXiv preprint
arXiv:2303.14126, 2023.

[4] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi,
Koki Nagano, and Luisa Verdoliva. On the detection of synthetic images
generated by diffusion models. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023.

[5] Ahmed A Elngar, Mohamed Arafa, Amar Fathy, Basma Moustafa, Omar
Mahmoud, Mohamed Shaban, and Nehal Fawzy. Image classification
based on cnn: a survey. Journal of Cybersecurity and Information
Management, 6(1):18–50, 2021.

[6] Luca Guarnera, Oliver Giudice, and Sebastiano Battiato. Level up
the deepfake detection: a method to effectively discriminate images
generated by gan architectures and diffusion models. arXiv preprint
arXiv:2303.00608, 2023.

[7] Aman Gupta, Rohan Ramanath, Jun Shi, and S Sathiya Keerthi. Adam vs.
sgd: Closing the generalization gap on image classification. In OPT2021:
13th Annual Workshop on Optimization for Machine Learning, 2021.

[8] Alexandros Iosifidis and Anastasios Tefas. Deep learning for robot
perception and cognition. Academic Press, 2022.

[9] Peter Lorenz, Ricard L Durall, and Janis Keuper. Detecting images gen-
erated by deep diffusion models using their local intrinsic dimensionality.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 448–459, 2023.

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

7. Appendix

7.1. Source Code

Github Link: https://github.com/angelri03/ai-art-detector

https://github.com/angelri03/ai-art-detector

	Introduction
	Project description
	Domains
	Scientific
	Technical

	Targeted Deliverables
	Scientific deliverables
	Technical deliverables

	Pre-requisites
	Scientific pre-requisites
	Technical pre-requisites

	 A Scientific Deliverable
	Requirements
	Design
	Production
	Related Works
	Convolutional Neural Networks
	Experiments

	Assessment

	A Technical Deliverable
	Requirements
	Design
	Production
	Creation of Dataset
	Building the Classifier
	Web Application

	Assessment

	Plagiarism statement
	References
	Appendix
	Source Code

